What is happening has deep roots. A key rationale by Sandia and Northrop Grumman for nuclear-powered drones was, as the British newspaper, The Guardian, reported last week, long--very long--flight times. "American scientists have drawn up plans for a new generation of nuclear-powered drones capable of flying over remote regions of the world for months on end without refueling," it reported. http://www.guardian.co.uk/world/2012/apr/02/us-plans-nuclear-drones The same rationale, noted Gagnon, was behind the U.S. development in the 1940s and 50s of nuclear-propelled bombers.
The strategy was for these nuclear-powered bombers to stay up in the air for extensive periods of time. There would thus be no need to scramble crews and have bombers take off to drop nuclear weapons on the Soviet Union--they'd already be airborne waiting for the command. The Nuclear Energy for the Propulsion of Aircraft or NEPA project was begun in 1946 and involved the conversion of two B-36 bombers for nuclear propulsion. The first operation of an aircraft engine using nuclear power occurred in 1956. The U.S. national laboratories--a string of facilities that got their start in the crash program to build atomic weapons, the Manhattan Project--were integral to the scheme. Oak Ridge National Laboratory, then run by the since disbanded U.S. Atomic Energy Commission, did much of the research work. Much of the testing was done at what is now Idaho National Laboratory where today two nuclear aircraft engines are on public display and there is also still remaining a gargantuan hangar built for nuclear aircraft. http://idptv.state.id.us/buildingbig/buildings/ineel.html General Electric was a major contractor.
The plan for nuclear-powered bombers was finally scuttled because of the problem of providing heavy lead shielding to protect the crew from radiation and, as then U.S. Secretary of Defense Robert McNamara told Congress in 1961, an atomic airplane would "expel some fraction of radioactive fission products into the atmosphere, creating an important public relations problem if not an actual physical hazard."
A subsequent program linking nuclear power and weapons was the Star Wars program under President Ronald Reagan. It was "predicated," as Gagnon notes, "on nuclear power in space." Reactors and also a "Super RTG" to be built by General Electric were to provide the energy on orbiting battle platforms for lasers, hypervelocity guns and particle beam weapons.
In my book, The Wrong Stuff: The Space Program's Nuclear Threat to Our Planet," and TV documentary, Nukes in Space: The Nuclearization and Weaponization of the Heavens, I noted the 1988 declaration of Lt. General James Abramson, first head of the Strategic Defense Initiative, that "without reactors in orbit [there is] going to be a long, long light cord that goes down to the surface of Earth" bringing up power. He stated: "Failure to develop nuclear power in space could cripple efforts to deploy anti-missile sensors and weapons in orbit."
As to nuclear-propelled rockets, the U.S. has a long history of seeking to build them from the 1950s onward. There was a program called Nuclear Engine for Rocket Vehicle Application or NERVA followed by Projects Pluto, Rover and Poodle. And in the 1980s, the Timberwind nuclear-powered rocket was developed to loft heavy Star Wars equipment into space and also for trips to Mars. Most recently, the Project Prometheus program to build nuclear-powered rockets was begun by NASA in 2003. Through the years there have been major concerns over a nuclear rocket blowing up on launch or crashing back to Earth.
The Soviet Union, Russia, conducted a parallel space nuclear program--including nuclear-powered satellites, development of a nuclear bomber and nuclear-powered rockets.
Now, meanwhile, nuclear power above our heads has been shown as unnecessary.
NASA has persisted in using Plutonium-238-powered RTGs on space probes claiming there was no choice. But last year it launched the Juno space probe which is now on its way to Jupiter--getting all its on-board electricity only from solar photovoltaic panels. It's to arrive in 2016 and make 32 orbits around Jupiter and perform a variety of scientific missions. As NASA stated last week on its website for Juno: "As of April 4, Juno was approximately209 million miles from Earth"The Juno spacecraft is in excellent health." http://www.nasa.gov/mission_pages/juno/main/index.html This is despite NASA claiming for decades that only nuclear power could provide on-board power in deep space.
Likewise, the European Space Agency in 2004 launched a space probe it calls Rosetta, also using solar energy rather than nuclear power for on-board electricity. It is to rendezvous in 2014 with a comet named 67P/Churyumov-Gerasimenko and send out a lander which will investigate the comet's surface. At that point it will be 500 million miles from the Sun, a small ball in the sky at that distance, yet Rosetta will still be harvesting solar energy. http://www.esa.int/esaMI/Rosetta/SEMHBK2PGQD_0.html
As to propulsion in space, a highly promising energy source are the ionized particles in space that can be utilized in the frictionless environment with what are being called solar sails.
In May 2010, the Japan Exploration Agency launched an experimental spacecraft, Ikaros, that seven months later reached Venus--propelled only by its solar sail. http://www.jaxa.jp/countdown/f17/overview/ikaros_e.html The Planetary Society is readying a similar mission using a spacecraft named LightSail-1 powered by solar sails and planning for two more ambitious solar sail flights of LightSail-2 and LightSail-3. http://www.planetary.org/programs/projects/solar_sailing/lightsail1.html
These missions do not present threats to life on Earth--as does the use of nuclear power overhead. And the threats of nuclear power overhead can be enormous. For example, consider the projection in NASA's Final Environmental Impact Statement for the Cassini Mission about the impacts if there were an "inadvertent reentry" of Cassini into Earth's atmosphere during one of its two "flybys"--whips around the Earth but a few hundred miles high to increase its velocity so it could get to Saturn. If it fell to Earth, broke up in the atmosphere and its 72.3 pounds of Plutonium-238 were released, "5 billion"of the world population"could receive 99 percent or more of the radiation exposure," projected NASA.
Moreover, the production of nuclear fuel on Earth for use in space--or in the atmosphere for drones--constitutes danger, too. Facilities that had been used earlier by the U.S. to produce Plutonium-238, Los Alamos National Laboratory and Mound Laboratory, ended up as hotspots for worker contamination and radioactive pollution.
James Powell, executive director of the organization Keep Yellowstone Nuclear Free, which has been opposing the restart of Plutonium-238 production at nearby Idaho National Laboratory, comments: " Aside from the looming danger of nuclear powered crafts above Earth, we should also realize that the nuclear material is to be produced in our backyards with 1960's era nuclear reactors and then transported back and forth from [Oak Ridge National Laboratory in]Tennessee to Idaho. Every single part of this process deeply concerns us."
-30-
(Note: You can view every article as one long page if you sign up as an Advocate Member, or higher).




